Chapter 1 Easy Remote Sensing – Notes XII

  • Home
  • Chapter 1 Easy Remote Sensing – Notes XII
Shape Image One
Chapter 1 Easy Remote Sensing – Notes XII
Remote Sensing - Class XII Notes

1. Remote Sensing Kya Hai? (What is Remote Sensing?)

Simple definition: Door se dekhna aur information lena.

Think of it like this: Jab aap Google Maps par apna ghar dekhte ho - wo satellite ne door se photo li hai. That's Remote Sensing!

Technical definition: Remote Sensing means collecting information about an object or area without physically touching it. We use cameras, sensors, and satellites placed high up in the sky.

Key point: You DON'T need to go to the place. Sensor door se hi sab Kuch deka Leta Hai.

2. Remote Sensing Kyon Important Hai? (Why do we need it?)

  1. Bahut bada area - Ek satellite image mein poora city ya state dikh sakta hai
  2. Fast information - Satellite har kuch din mein wahi area dubara capture kar sakta hai
  3. Dangerous places - Jahan insaan nahi ja sakta (jungle, desert, ocean), wahan ka bhi data mil jata hai
  4. Save time and money - Ground survey karne se bahut sasta aur fast
  5. Past data - Purane images dekhkar changes pata chal sakte hain

Real uses:

  • Kheti ki health check karna (crops healthy hain ya nahi)
  • Paani ka management (rivers, lakes kitne bhar gaye)
  • Jungle me lagi aag track karna
  • City planning (kahan buildings ban rahe hain)
  • Weather prediction

3. Energy Aur Light Ki Basic Baat (Electromagnetic Radiation)

Sabse important concept: Remote Sensing light/energy ka game hai.

EMR (Electromagnetic Radiation) Kya Hai?

Simple words mein: Light jo wave ki tarah travel karti hai. Sabhi garam cheezein energy release karti hain.

  1. Sun = Bahut garam, to bahut zyada light/energy release karta hai
  2. Earth (Zameen) = Kam garam, to kam energy release karti hai
  3. Har cheez apni energy radiate krti hai - humans bhi!

Speed: light speed = 3 lakh km per second (bahut fast!)

4. Wavelength Aur Temperature Ki Dosti (Wien's Law)

Super simple rule:

  • Jitna HOT = Energy CHHOTI wavelength par release hoti hai
  • Jitna COOL = Energy LAMBI wavelength par release hoti hai

Examples:

ObjectTemperaturePeak Wavelength
Sun6000°C (bahut hot)0.48 μm (visible light - jo hum dekh sakte hain)
Earth (Zameen)27°C (normal)9.7 μm (thermal infrared - jo hum nahi dekh sakte)
Human body37°C9.4 μm (infrared - thermal camera mein dikhte hain)
Table 1: Temperature aur wavelength ka relation
Yaad rakhne ka trick: Sun hot hai to visible light (jo dikhti hai), Earth cool hai to infrared (jo nahi dikhti).

5. Electromagnetic Spectrum - Light Ke Types

Imagine: Light ek rainbow ki tarah hai - different colors = different wavelengths.

Spectrum Order (Chhoti to Lambi Wavelength):

  1. Ultraviolet (UV) - Bahut chhoti, sun se aati hai
  2. Visible Light (400-700 nm) - JO HUM DEKH SAKTE HAIN
    • Blue (400-500 nm)
    • Green (500-600 nm)
    • Red (600-700 nm)
  3. Near Infrared (NIR, 700-2500 nm) - Thodi lambi, vegetation ke liye best
  4. Thermal Infrared (2.5-100 μm) - Bahut lambi, heat detect karti hai
  5. Microwave (0.1-30 cm) - Sabse lambi, clouds ke through dekh sakti hai

Remote Sensing mein sabse useful: Visible, NIR, Thermal IR, Microwave

6. Energy Aur Surface Ka Interaction (Kya Hota Hai Jab Light Surface Par Girti Hai?)

Jab sunlight kisi cheez par girti hai, 4 cheezein ho sakti hain:

A) Reflection (Wapas Uchhal Jaana)

Matlab: Light surface se takrakar wapas aa jati hai - jaise mirror mein.

RS mein importance: Sensor jo dekhta hai wo reflected light hi hai!

  1. Smooth surface = Specular reflection (ekdum seedha wapas)
  2. Rough surface = Diffuse reflection (har taraf bikhar ke)

Example: Paani smooth hai to specular, grass rough hai to diffuse.

B) Absorption (Soak Ho Jaana)

Matlab: Surface ne energy absorb kar li, heat ban gayi.

Example: Black shirt white shirt se zyada absorb karti hai (isliye zyada garam feel hoti hai).

RS mein: Jo absorb ho gaya wo sensor tak nahi pahunchega, to wo cheez us wavelength mein dark dikhegi.

C) Transmission (Paas Ho Jaana)

Matlab: Energy surface ke through nikal gayi.

Example: Glass, paani - light inke through nikal sakti hai.

D) Scattering (Bikhar Jaana)

Matlab: Atmosphere mein chhote particles se takrakar energy har direction mein bikhar jati hai.

Example: Sky blue kyon hai? Blue light zyada scatter hoti hai!

RS problem: Haze/clouds ke wajah se image unclear ho sakti hai.

7. Reflectance - Sabse Important Concept

Simple definition: Kitne percent light wapas aayi?

Formula:
Reflectance (%) = (Reflected Energy / Incident Energy) × 100

Example: Agar 100 units light aayi aur 30 wapas aayi, to reflectance = 30%

Spectral Reflectance Curve

Har cheez ka apna signature hota hai - matlab different wavelengths par different reflectance.

Ye signature hi hai jo cheezein pehchanne mein madad karta hai!

8. Different Cheezein Kaise Dikhti Hain? (Spectral Signatures)

A) VEGETATION (Paudhe/Pedh/Fasal/Jangal)

Healthy plants ka pattern:

WavelengthReflectance
Blue (400-500 nm)LOW (5%) - Chlorophyll absorb karta hai
Green (500-600 nm)MEDIUM (10-15%) - Isliye green dikhte hain
Red (600-700 nm)LOW (5%) - Chlorophyll absorb karta hai
NIR (700-1300 nm)VERY HIGH (40-50%) - Healthy leaf structure
Table 2: Vegetation reflectance pattern

Yaad rakhne ka golden rule:

  • RED mein LOW (absorb hota hai)
  • NIR mein HIGH (reflect hota hai)
  • Ratio zyada = Healthy plant!

Kyon aisa hota hai?

  • Chlorophyll (green chemical in leaves) red aur blue light use karta hai photosynthesis ke liye
  • Leaf ka internal structure NIR ko bahut reflect karta hai

Practical use: Satellite image mein jo area NIR mein bright hai = healthy vegetation hai.

B) WATER (Paani)

Water ka pattern: Bahut simple!

WavelengthReflectance
Blue (400-500 nm)MEDIUM (5-10%) - Thoda reflect
Green (500-600 nm)LOW (2-5%)
Red aur NIRALMOST ZERO (0-2%) - Sab absorb
Thermal IRZERO - Complete absorption
Table 3: Water reflectance pattern

Golden rule for water:

  • Visible light mein thoda dikhta hai (blue/green reflect hota hai, isliye paani blue dikhai deta hai)
  • Infrared mein BILKUL BLACK (almost zero reflection)

Practical use: NIR images mein paani bilkul dark/black dikhta hai - isliye river, lake aasani se identify ho jati hai.

Extra points:

  • Clean paani = Blue/green reflect
  • Muddy paani = Sediment ki wajah se zyada reflectance
  • Deep paani = Darker (more absorption)

C) SOIL

Soil ka pattern: Depends on moisture aur type

General rule: Wavelength badhe to reflectance badhti hai (upward slope).

ConditionReflectance
Dry soilHIGH - Bright dikhti hai
Wet soilLOW - Dark dikhti hai
Sandy soilHIGH - Light color
Clay soilMEDIUM
Organic-rich soilLOW - Dark color
Table 4: Different soil types ki reflectance
Yaad rakhne ka trick: Jitni geeli mitti, utni dark. Jitni sukhi, utni bright.

Practical use: Satellite se soil moisture map bana sakte hain - agriculture ke liye useful.

D) BUILT-UP AREAS (Buildings/Roads)

Urban features ka pattern: Mixed hai

  1. Concrete/Cement - Generally HIGH reflectance (bright)
  2. Asphalt/Tar roads - LOW reflectance (dark)
  3. Metal roofs - VERY HIGH (bahut bright)
  4. Red bricks - Red wavelength mein zyada

Practical use: City planning mein built-up area vs green area distinguish karne ke liye.

9. NDVI - Vegetation Health Ka Simple Score

NDVI = Normalized Difference Vegetation Index

Iska matlab: Ek number jo batata hai ki vegetation kitni healthy hai.

Formula:
NDVI = (NIR - Red) / (NIR + Red)

Kyon ye formula? Kyunki healthy plants:

  • NIR bahut zyada reflect karte hain
  • Red bahut kam reflect karte hain (absorb kar lete hain)

NDVI Values Ka Matlab

NDVI ValueRangeMeaning
Negative-1 to 0Water bodies (paani)
Around Zero0 to 0.1Bare soil/rock (khali zameen)
Low Positive0.1 to 0.3Sparse vegetation (kam pedh)
Medium0.3 to 0.6Moderate vegetation
High0.6 to 1.0Dense healthy vegetation (ghane hare pedh)
Table 5: NDVI interpretation guide
Simple Example:
Agar ek pixel ka:
• NIR reflectance = 50%
• Red reflectance = 10%

NDVI = (50 - 10) / (50 + 10) = 40 / 60 = 0.67

Result: 0.67 = Healthy dense vegetation!

Practical uses:

  • Crop health monitoring (fasal healthy hai ya nahi)
  • Deforestation tracking (jungle kat raha hai ya nahi)
  • Drought detection (sukha pad raha hai kya)

10. Resolutions - 4 R ! (Super Important!)

Satellite image ki quality 4 cheezein decide karti hain - 4 R yaad rakho!

A) SPATIAL RESOLUTION (Pixel Size)

Simple matlab: Kitni chhoti cheez dikh sakti hai?

Rule: Chhota pixel = Zyada detail

SatellitePixel SizeKya Dikh Sakta Hai
Google Earth (high)0.5 mGaadi, chhoti buildings
IKONOS1 mIndividual trees
Sentinel-210 mChote fields
Landsat30 mBade fields, forests
MODIS250 m - 1 kmLarge area changes
Table 6: Different spatial resolutions

Practical understanding:

  • 1 m pixel = Ek square meter zameen ek pixel mein
  • 30 m pixel = 30×30 = 900 square meters ek pixel mein

Trade-off: High resolution (chhota pixel) = Chhota area cover hota hai.

B) SPECTRAL RESOLUTION (Kitne Bands/Colors)

Matlab: "Kitne alag-alag wavelengths/colors mein image li gayi?"

Types:

  1. Panchromatic (PAN) - Sirf 1 band (black & white)
    • Best for: Shape aur texture dekhna
  2. Multispectral - 3 to 10 bands
    • Example: Landsat (7 bands), Sentinel-2 (13 bands)
    • Best for: General purpose classification
  3. Hyperspectral - 100+ bands (bahut zyada!)
    • Example: Hyperion (220 bands)
    • Best for: Detailed mineral/chemical analysis

Analogy: TV ki tarah - black-white (1 band) vs color (3 bands) vs HD (bahut bands).

Why more bands? Different materials different bands mein alag dikhte hain - zyada bands = better identification.

C) RADIOMETRIC RESOLUTION (Brightness Levels)

Matlab: "Kitne alag brightness levels detect kar sakte hain?"

Measured in: Bits (computer language)

BitsLevelsQuality
6-bit64 levelsLow (purane satellites)
7-bit128 levelsMedium
8-bit256 levelsGood (common)
11-bit2048 levelsVery good
12-bit4096 levelsExcellent (modern satellites)
Table 7: Radiometric resolution comparison

Simple understanding:

  • 8-bit = 0 (bilkul black) se 255 (bilkul white) tak
  • Zyada levels = Subtle differences bhi dikh sakte hain

Example: Clouds ki shadows, paani ki depth - subtle changes detect karne ke liye high radiometric resolution chahiye.

D) TEMPORAL RESOLUTION (Revisit Time)

Matlab: "Same area ki photo dubara lene mein kitna time lagta hai?"

SatelliteRevisit TimeBest For
Geostationary (INSAT)ContinuousWeather (har minute)
Planet LabsDailyDaily monitoring
Sentinel-25 daysCrop monitoring
Landsat16 daysGeneral mapping
IKONOS3-5 daysUrban change detection
Table 8: Temporal resolution examples

Practical importance:

  • Fast changes (floods, fires) = Daily images chahiye
  • Slow changes (urban growth) = Monthly/yearly bhi chalega
  • Agriculture = Weekly monitoring best hai

Trade-off: Fine spatial resolution = Slow revisit (kyunki chhota area dekhta hai).

11. Remote Sensing Process - Step By Step Flow

Poora system kaise kaam karta hai? Simple 7 steps:

  1. ENERGY SOURCE (Sun)
    • Sun light/energy bhejta hai (passive RS)
    • Ya sensor apni energy bhejta hai (active RS - radar)
  2. ATMOSPHERE SE THROUGH
    • Energy atmosphere (clouds, particles) se guzarti hai
    • Kuch energy scatter/absorb ho jati hai
  3. SURFACE INTERACTION
    • Energy zameen par girti hai
    • Reflect, absorb, transmit hoti hai
    • Har surface alag tarike se react karta hai
  4. WAPAS ATMOSPHERE SE
    • Reflected energy wapas upar jati hai
    • Phir se atmosphere se guzarti hai
  5. SENSOR DETECTION
    • Satellite/aircraft par laga sensor energy detect karta hai
    • Different bands mein record karta hai
  6. DATA TRANSMISSION
    • Sensor ka data ground station ko bheja jata hai
    • Digital format mein hota hai
  7. PROCESSING & ANALYSIS
    • Computer par data process hota hai
    • Maps, images, information nikalta hai
Remember: Sun → Atmosphere → Surface → Atmosphere → Sensor → Ground Station → Your Computer!

12. Image Interpretation - Cheezein Kaise Pehchante Hain?

7 Elements yaad rakho (Exam mein zaroor aata hai!):

A) TONE / COLOR

Matlab: Kitni bright/dark, kaunsa color?

Examples:

  • Dark tone = Water, wet soil, shadows
  • Bright tone = Dry soil, concrete, clouds
  • Green = Vegetation
  • Blue = Water bodies

B) SIZE

Matlab: Object kitna bada/chhota?

Examples:

  • Small = Gaadi, individual trees
  • Medium = Houses, small fields
  • Large = Stadiums, airports, large fields

C) SHAPE

Matlab: Object ka shape kaisa hai?

Examples:

  • Circular = Storage tanks, roundabouts
  • Rectangular = Buildings, agricultural fields
  • Irregular = Natural features (lakes, forests)
  • Linear = Roads, railways, rivers

D) PATTERN

Matlab: Objects ka arrangement/design?

Examples:

  • Grid pattern = Planned city (roads 90° par)
  • Random = Old city, natural forests
  • Rows = Orchards (aam/ped ki줄)
  • Parallel lines = Crop rows, terraces

E) TEXTURE

Matlab: Surface smooth hai ya rough?

Examples:

  • Smooth = Paani, roads, fields
  • Rough = Forests, urban areas
  • Fine = Grass, young crops
  • Coarse = Mature trees, buildings

F) SHADOW

Matlab: Chhaya se height aur shape pata chalta hai.

Uses:

  • Tall buildings ka shadow lamba
  • Shadow direction se time pata chal sakta hai
  • 3D structure identify karne mein help

Problem: Kabhi information chhup jati hai shadow mein.

G) ASSOCIATION / CONTEXT

Matlab: Aas-paas kya hai usse guess lagao.

Examples:

  • Stadium ke paas parking = Sports complex
  • Tanks near railway = Industrial area
  • Green patches near houses = Parks/gardens
  • Boats on water = Fishing area
Trick: Ek element se confirm nahi hota - sabko combine karke dekho!

13. Aerial Photography Basics (Plane Se Photos)

Types of Photos

  1. Vertical Photography
    • Camera seedha niche (90° angle)
    • Best for mapping
    • Uniform scale
  2. Oblique Photography
    • Camera teda (angle par)
    • Low oblique: Horizon nahi dikhta
    • High oblique: Horizon dikh jata hai
    • Good for perspective view

Photo Scale (Simple Formula!)

Scale = f / H

Where:

  • f = Focal length of camera (chhota number, mm mein)
  • H = Flying height (bada number, meters mein)
Example:
• Camera focal length = 150 mm = 0.15 m
• Plane flying at height = 3000 m

Scale = 0.15 / 3000 = 1 / 20000

Matlab: 1 cm on photo = 20,000 cm (200 m) on ground!

Simple rule: Zyada height se udoge to chhoti scale (kam detail).

Overlap (Photo Overlap Kyon Chahiye?)

TypePercentagePurpose
Forward overlap60%Stereo vision (3D dekhna)
Side overlap20-30%Full coverage (koi area chhute na)
Table 9: Photo overlap requirements

Analogy: Jaise aapki do aankhen slightly alag angle se dekhti hain aur brain 3D banata hai - waise hi overlapping photos se 3D view milta hai!

14. Digital Image Processing (DIP) - Computer Par Kya Hota Hai?

A) IMAGE RESTORATION (Corrections)

Purpose: Raw image ko theek karna.

Types:

  1. Geometric Correction
    • Distortion hatana (tedi-medi lines seedhi karna)
    • GPS points use karke accurate position fix karna
  2. Radiometric Correction
    • Brightness ko normalize karna
    • Atmospheric effects hatana (haze/clouds ka effect)
    • Sensor errors fix karna

B) IMAGE ENHANCEMENT (Better Dikhana)

Purpose: Image ko zyada clear aur useful banana.

Common techniques:

  1. Contrast Stretching
    • Dull image ko bright & clear banana
    • DN values ko spread karna (0-255 range mein)
  2. Histogram Equalization
    • Sab brightness levels equal distribution
    • Dark areas zyada visible
  3. Filtering
    • Low-pass filter: Noise/roughness hatana (smooth banana)
    • High-pass filter: Edges enhance karna (boundaries sharp)
  4. Band Ratios
    • Do bands ka division (e.g., NIR/Red)
    • Specific features highlight karne ke liye
    • NDVI ek famous ratio hai!

C) IMAGE CLASSIFICATION (Cheezein Identify Karna)

Purpose: Har pixel ko ek category assign karna.

Two main types:

1. Supervised Classification

Process:

  1. Step 1: Aap training areas select karte ho
    • "Ye water hai" "Ye forest hai" "Ye city hai"
  2. Step 2: Computer signature seekhta hai
    • Har class ka spectral signature note karta hai
  3. Step 3: Computer poori image classify karta hai
    • Har pixel ko similar class assign karta hai
  4. Step 4: Accuracy check karo
    • Ground truth se compare karo

Analogy: Teacher (aap) student (computer) ko examples deke sikhate ho, phir wo exam (classification) deta hai.

Algorithms: Maximum Likelihood, Minimum Distance, etc.

2. Unsupervised Classification

Process:

  1. Computer khud pixels ko groups mein divide karta hai
  2. Similar spectral values wale pixels ek group mein
  3. Aap baad mein groups ko naam dete ho
    • "Ye green cluster = forest"
    • "Ye blue cluster = water"

Analogy: Student (computer) khud similar cheezein group karta hai, teacher (aap) bas label lagata hai.

Algorithms: K-means, ISODATA

Comparison:

AspectSupervisedUnsupervised
Training needed?YES (aap dete ho)NO (computer khud)
AccuracyGenerally higherVariable
TimeMore (training time)Less
Best forKnown classesUnknown patterns
Table 10: Supervised vs Unsupervised classification

15. Advanced Remote Sensing Technologies

A) THERMAL REMOTE SENSING (Heat Dekhna)

What: Temperature/heat detect karna using thermal infrared (8-14 μm).

Key points:

  1. Day-night dono mein kaam karta hai (own thermal emission)
  2. Clouds ke niche bhi kuch detect kar sakta hai
  3. Temperature differences clearly dikhte hain

Applications:

  • Volcanoes monitor (hot spots)
  • Forest fires detect (heat signature)
  • Urban heat islands (city zyada garam)
  • Water stress in crops (temperature change)
  • Building heat loss (insulation check)

Example: Fire brigade thermal camera use karte hain - aag nahi dikhti to bhi hot spots dikh jate hain.

B) MICROWAVE REMOTE SENSING

What: Bahut lambi wavelength (0.1-30 cm) use karna.

Special power: Clouds, smoke, rain, darkness ke through dekh sakta hai!

Types:

  1. Passive Microwave
    • Earth ki natural microwave emission detect karta hai
    • Soil moisture, ocean temperature
  2. Active Microwave (RADAR)
    • Sensor apni energy bhejta hai
    • Reflection measure karta hai
    • All-weather, day-night operation

Advantages:

  • Weather se independent (badal se bhi dekh sakta hai!)
  • Day-night operation
  • Rough surface ko well detect karta hai

C) RADAR (Radio Detection and Ranging)

Simple understanding: Radar apni microwave pulse bhejta hai, echo (wapas aane wala signal) measure karta hai.

How it works:

  1. Antenna microwave pulse transmit karta hai
  2. Pulse surface se takrata hai
  3. Echo wapas antenna par aata hai
  4. Time delay aur strength measure hota hai
Distance = (Speed of light × Time) / 2

(Divide by 2 kyunki signal wapas bhi aata hai!)

What RADAR detects:

  • Backscatter intensity: Kitni strong echo aayi?
    • Smooth surface = Weak (specular reflection)
    • Rough surface = Strong (diffuse scattering)

Applications:

  • Ocean wave height
  • Ice sheet monitoring
  • Terrain mapping (through clouds)
  • Ship detection
  • Crop type identification (texture se)

Famous RADAR satellites: RADARSAT (Canada), Sentinel-1 (Europe), RISAT (India)

D) LiDAR (Light Detection and Ranging)

What: Laser pulses use karke precise 3D measurement.

How it works:

  1. Laser pulses bheje (thousands per second!)
  2. Surface se reflect hoke wapas aaye
  3. Return time measure karo
  4. Distance calculate karo
  5. 3D point cloud bane

Accuracy: Bahut high - centimeter level!

Applications:

ApplicationUse
Terrain mappingDigital Elevation Model (DEM) banana
Forest inventoryTree height, canopy structure
Urban 3D modelingBuildings ka 3D reconstruction
Flood mappingAccurate elevation for water flow
Powerline inspectionTrees powerlines ko touch to nahi?
Archaeological sitesHidden structures under vegetation
Table 11: LiDAR applications

Special feature: Vegetation ke through dekh sakta hai - ground elevation bhi milta hai!

Types:

  • Airborne LiDAR: Plane/helicopter se
  • Terrestrial LiDAR: Ground-based tripod se
  • Mobile LiDAR: Car par mounted

16. Indian Remote Sensing Programme (Quick Overview)

ISRO (Indian Space Research Organisation) ka contribution:

Major Satellites:

  1. IRS Series (Indian Remote Sensing)
    • IRS-1A (1988) - Pehla Indian RS satellite
    • IRS-1C/1D - Improved versions
    • ResourceSat series - Continue ho raha hai
  2. CARTOSAT Series
    • High resolution (2.5 m)
    • Stereo imaging (3D mapping)
    • Urban planning, infrastructure ke liye
  3. RISAT (Radar Imaging Satellite)
    • All-weather, day-night capability
    • Microwave/radar technology
    • Agriculture, disaster monitoring
  4. Oceansat
    • Ocean studies
    • Coastal zone monitoring

Ground stations: National Remote Sensing Centre (NRSC), Hyderabad - yahaan data receive aur process hota hai.

17. Quick Memory Tricks (Exam Ke Liye!)

Golden Rules (Hamesha Yaad Rakho!)

  1. Vegetation rule:
    • RED low, NIR high = Healthy plant
    • Ratio check karo!
  2. Water rule:
    • Infrared mein dark (almost zero)
    • Visible mein thoda reflect
  3. Temperature rule:
    • Hot → Chhoti wavelength (Sun = visible)
    • Cool → Lambi wavelength (Earth = thermal IR)
  4. 4R mantra:
    • Spatial = Pixel size (detail)
    • Spectral = Bands (colors)
    • Radiometric = Brightness levels
    • Temporal = Revisit time
  5. Classification quick:
    • Supervised = Aap sikhate ho → Computer classify karta hai
    • Unsupervised = Computer groups banata → Aap naam rakhte ho
  6. NDVI formula:
    • (NIR - Red) / (NIR + Red)
    • Range: -1 to +1
    • High positive = Dense vegetation

Comparison Table (Bahut Useful!)

FeatureVisibleInfrared
VegetationGreen appearVery bright (NIR)
WaterBlue/visibleBlack/dark
Dry soilBrightBright
Wet soilDarkVery dark
CloudsWhiteWhite
Table 12: How features appear in different bands

Common Exam Questions (Rapid Fire!)

Q: RS ka main advantage?
A: Large area, fast data, inaccessible areas, repeat coverage, cost-effective.

Q: Paani ko best kaise detect karein?
A: NIR ya thermal IR band - paani bilkul dark dikhega.

Q: NDVI high kyon hota hai healthy crops mein?
A: Kyunki NIR reflectance bahut high (40-50%) aur Red absorption bahut high (chlorophyll).

Q: Spatial resolution ka matlab?
A: Pixel size - kitni chhoti cheez identify kar sakte hain.

Q: Active vs Passive RS?
A: Passive = Sun ki energy use (optical); Active = Apni energy bhejte (radar, lidar).

Q: Supervised classification ka first step?
A: Training samples select karna (ground truth data).

Q: Cloud penetration ke liye best?
A: Microwave/Radar - clouds ke through dekh sakta hai.

Q: LiDAR ki specialty?
A: High-accuracy 3D data, centimeter-level precision.

18. Important Definitions (Exam Mein Likhne Ke Liye)

Remote Sensing:
The science of acquiring information about Earth's surface without being in physical contact with it, using sensors mounted on platforms like satellites or aircraft to detect and measure electromagnetic radiation.

Electromagnetic Radiation (EMR):
Energy that travels in wave form at the speed of light, emitted by all objects above absolute zero temperature.

Reflectance:
The ratio of reflected energy to incident energy, expressed as a percentage, which varies with wavelength and surface characteristics.

Spectral Signature:
The unique pattern of reflectance across different wavelengths that characterizes a particular material or feature, used for identification.

Spatial Resolution:
The smallest object or area that can be distinguished in an image, determined by pixel size (e.g., 30 m for Landsat).

NDVI (Normalized Difference Vegetation Index):
A numerical indicator calculated as (NIR - Red)/(NIR + Red) that quantifies vegetation health and density, ranging from -1 to +1.

Classification:
The process of categorizing pixels in a remote sensing image into meaningful land cover or land use classes based on their spectral characteristics.

Supervised Classification:
A classification method where the analyst provides training samples of known classes to guide the algorithm in categorizing the rest of the image.

Unsupervised Classification:
An automated classification approach where the algorithm groups pixels into spectral clusters without prior training, and the analyst later assigns class labels.

19. Final One-Page Cheat Sheet

CORE CONCEPTS

  • RS = Door se information gathering (satellite/aircraft sensors)
  • EMR = Light/energy waves - sabse important hai!
  • Hot = Chhoti wavelength (Sun visible); Cool = Lambi wavelength (Earth thermal)

SPECTRAL SIGNATURES (Sabse Important!)

VEGETATION: Red LOW + NIR HIGH = Healthy
WATER: IR mein BLACK (zero reflect)
SOIL: Dry BRIGHT, Wet DARK
URBAN: Mixed (concrete bright, asphalt dark)

4 RESOLUTIONS

Spatial: Pixel size (detail) - 1m to 1km
Spectral: Bands count - PAN (1), Multi (3-10), Hyper (100+)
Radiometric: Brightness levels - 8-bit = 256 levels
Temporal: Revisit time - Daily to 16 days

NDVI FORMULA

NDVI = (NIR - Red) / (NIR + Red)

Range: -1 (water) → 0 (bare) → +1 (dense veg)

CLASSIFICATION

Supervised: Aap train → Computer classify
Unsupervised: Computer group → Aap label

7 INTERPRETATION ELEMENTS

Tone, Size, Shape, Pattern, Texture, Shadow, Association

INTERACTIONS

Reflect, Absorb, Transmit, Scatter, Emit

ADVANCED TECH

Thermal: Heat detect, day-night
Microwave: Cloud penetration, all-weather
RADAR: Own energy, rough surface detect
LiDAR: Laser, 3D precision

Practice Questions (Try Karo!)

Short Answer (2 marks)

  1. Define Remote Sensing with one example.
  2. What is spectral signature?
  3. Write NDVI formula and explain its range.
  4. Differentiate between spatial and spectral resolution.
  5. What is the advantage of microwave RS?

Medium Answer (5 marks)

  1. Explain how vegetation appears in visible and NIR bands.
  2. Describe the four types of resolutions in remote sensing.
  3. What are the steps in supervised classification?
  4. How does water body appear in different wavelengths?
  5. Explain Wien's Law with examples.

Long Answer (10 marks)

  1. Explain the complete remote sensing process from energy source to final product.
  2. Describe spectral reflectance curves of vegetation, water, and soil with diagrams.
  3. Compare and contrast supervised and unsupervised classification methods.
  4. Discuss the applications of thermal and microwave remote sensing.

References

[1] National Council of Educational Research and Training (NCERT). (2024). Geospatial Technology - Class XII. NCERT Publications.

[2] Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2015). Remote Sensing and Image Interpretation (7th ed.). John Wiley & Sons.

[3] Jensen, J. R. (2016). Introductory Digital Image Processing: A Remote Sensing Perspective (4th ed.). Pearson Education.

[4] Indian Space Research Organisation (ISRO). (2024). Remote Sensing Applications. https://www.isro.gov.in

[5] Campbell, J. B., & Wynne, R. H. (2011). Introduction to Remote Sensing (5th ed.). Guilford Press.

Yaad rakho: Practice karo, diagrams banao, examples samjho - Remote Sensing easy hai agar concepts clear hain!

All the best! 🚀📡🛰️

Leave a Reply

Your email address will not be published. Required fields are marked *